Cryptography Using Artificial Intelligence
Author: Blackledge J., Bezobrazov S., Tobin P.
Abstract: This paper presents and discusses a method of generating encryption algorithms using neural networks and evolutionary computing. Based on the application of natural noise sources obtained from data that can include atmospheric noise (generated by radio emissions due to lightening, for example), radioactive decay, electronic noise and so on, we `teach' a system to approximate the input noise with the aim of generating an output nonlinear function. This output is then treated as an iterator which is subjected to a range of tests to check for potential cryptographic strength in terms of metric such as a (relatively) large positive Lyapunov exponent, high information entropy, a high cycle length and key diffusion characteristics, for example. This approach provides the potential for generating an unlimited number of unique Pseudo Random Number Generator (PRNG) that can be used on a 1-to-1 basis.
Keywords: coding and encryption; artificial intelligence; multiple algorithms; personalised encryption engines; artificial neural networks; evolutionary computing.